Contextual Modelling in Context-Aware Recommender Systems: A Generic Approach

نویسندگان

  • Christos Mettouris
  • George Angelos Papadopoulos
چکیده

Context-aware recommender systems (CARS) use context data to enhance their recommendation outcomes by providing more personalized recommendations. Context modelling is a basic procedure towards this direction since it models the contextual parameters to be used during the recommendation process. Most literature works however build domain specific contextual models that only represent information of a particular domain, excluding the possibility of model sharing and reuse among other CARS. In this paper we focus on this issue and study whether a more generic modelling approach can be applied for CARS. We discuss a possible solution and show through literature review on relevant systems that the proposed solution has not yet been applied. Next, we present a novel generic contextual modelling framework for CARS, discuss its advantages and evaluate it.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Context-Aware Recommender Systems: A Review of the Structure Research

 Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...

متن کامل

سیستم پیشنهاد دهنده زمینه‌آگاه برای انتخاب گوشی تلفن همراه با ترکیب روش‌های تصمیم‌گیری جبرانی و غیرجبرانی

Recommender systems suggest proper items to customers based on their preferences and needs. Needed time to search is reduced and the quality of customer’s choice is increased using recommender systems. The context information like time, location and user behaviors can enhance the quality of recommendations and customer satisfication in such systems. In this paper a context aware recommender sys...

متن کامل

Paradigms for Incorporating Context in CARS

Recommender systems are a subclass of information filtering systems that predict the 'rating' or 'preference' that a user would give to an item. Most traditional Recommender Systems (RSs) focus on recommending the most relevant items to individual users and do not take into consideration the circumstances and other contextual information such as time, place and company of other people when reco...

متن کامل

Similarity-Based Context-Aware Recommendation

Context-aware recommender systems (CARS) take context into consideration when modeling user preferences. There are two general ways to integrate context with recommendation: contextual filtering and contextual modeling. Currently, the most effective context-aware recommendation algorithms are based on a contextual modeling approach that estimate deviations in ratings across different contexts. ...

متن کامل

Merging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems

In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012